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S table Discrete Adaptive Control

Kumpati S. Narendra and Yuan—Hao Lin

1. Introduction: At present there is widespread interest in the stable adaptive

control of unknown linear time—invariant plants using input—output data. Schemes

have been suggested for both direct [1—311 and indirect [4,51 control of continuous

as well as discrete [6,7) systems and the equivalence of the two schemes in some

cases has also been demonstrated [4,5]. Probably the single most important prob—

1cm to arise in the course of these investigations concerns the proof of stability

of the overall adaptive control loop.

Monopoli [11 proposed a scheme for continuous systems involving an auxiliary

signal fed into the reference model and a corresponding augmented error between

model and plant outputs. Narendra and Valavani f 2], using p(aitive real operators,

suggested a similar approach and clarified the resulting stability problem when

the relative degree of the plant is greater than or equal to three. They offered
p

a conjecture that the adaptive loop would also be stable for the general case.

Feuer and Morse [3] proposed a stable solution to the adaptive control problem but

the resulting controller is much too complex for use in practical applications.

Thus, the search has continued for a controller with a simple structure which will

assure the asymptotic stability in the large of the adaptive loop. The results
I

presented in this paper demonstrate the desired stability behavior for discrete

versions of the simple controllers suggested in [1] and [2]. The control problem

continuous case however remains unresolved.

p.per ex n.s the discr te version of the considered in [2]

~~recapitu 1ating the basic philosophy as well a. the specific technique used for

• the design of th. adaptive controll.;1 that pap.~ ence the first few sections

$ of this paper have been considerably condensed and the interested reader is referred

to the earlier work for all details. Tb. principal contribution made here is the

verification of the conjecture 4 tm43~~regarding the stability of the adaptive -“ ‘--it
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loop, for the discrete problem. Accordingly most of the paper is devoted to the

proof of stability. These results together with some recent work done on the

stability of differential equations with unbounded coefficients4&~~may prove

helpful in resolving the stability problem of continuous adaptive systems as

2. Statement of the Problem:

A single—input single—output discrete linear time—invariant plant P is described

by the input—output pair {u(k),y (k)} and can be represented by the transfer function

Z (z)
W (z) — k 

R~() 
(1)

where W (z) is proper with E~(z) a monic polynomial of degree n, Z~ (z) a monic

stable* polynomial of degree m < n and k a constant gain parameter. The integer

n — m is called the relative degree of the plant. We assume that only m,n and the

sign of k are known while the coefficients of Z~, and are unknown.

A reference model M whose output y
M

(k) represents the behavior desired from

the plant when augmented by a suitable controller can be represented by the transfer
V

function

A Z
M
(Z)

• WM(z) — kM RH o (2)

a where R
N

(z) and Z
M
(z) are monic stable polynomials of degrees n and r < m respec-

tively and k~ is a constant. Hence the relative degree of the model is assumed to

be greater than or equal to that of the plant. The input to the model is a speci—

fied uniformly bounded reference input r(k).

The adaptive control problem is to determine a suitab1e~~ tro f u(k)

~ON ~O(
such that W~ e ~eCt~c1l

NT 
Lft ~~~ a

e (k) y (k) — y (k) ~ 0 as k + ~~. (3)1 p 3tj$tI’lC~~ ‘~ 

vita all zeros inside the unit circle. BY •

0’ .’
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For the sake of simplicity we shall assume that r — m . As in the continuous

case the solution to the above problem may be divided into two parts. The first

part which is algebraic in nature addresses itself to the realizability of a

suitable controller structure. It can be shown exactly as in the continuous case

(2] that a controller can be found which can achieve (3) with a fixed set of

parameters. In the following section the equations describing the controller are

merely stated . The second part is analytic in nature and deals with the stability

of the adaptive error equations. Again, it is found that when m — n (or m—n—l in

the continuous case) the adaptive equations can be shown relatively easily to be

asymptotically stable. Hence our main interest is in the case m < n — 1 and

auxiliary inputs have to be fed into the reference model. The statement of the

stability problem and the proof of stability are considered in detail in section 5.

• 3. Structure of the Adaptive Controller :

A. in 12] two different structures are needed for the discrete adaptive con-

trol problem corresponding to the two cases m — it and m < n — 1. When in — n and
• 

*
the model transfer func t ion is assumed to be positive real the simple structure

shown in Figure (1) can be used. For the case when in < n — 1, as described in ( 2 ] ,

• an auxiliary signal has to be fed into the model and the corresponding structure

is shown in Figure (2) . A brief description of the controller struc ture for the two

cases is given below:
•

Case (I) Ce—n): The controller consists of (2n+l) adjustable parameters which are

th. elements of a parameter vector e (k) defined by

~ [k0(k) ,c1(k),. . .c (k) ,d1(k) ,d2 (k) , ...d~ (k)) .

Two identical auxiliary signal generators of dimension ‘n’ having state variables
S 

(1) ‘2’v (k) and v ‘(k) and inputs u(k) and y Ok) respectively as shown in Figure (1)

* There is no loss of generality here since by prefiltering th. model can be made
positive real. 

i:—
~
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form part of the controller. If a vector ~ (k) is def ined as

— (r(k) ,v(
~~ (k) T ,v

(2) (k) T ]

the signal fedback into the plant may be represented by

~
T (k)~~(k) — c~~(k) Trw(k)e

1
(k) (4)

The first term in (4) represents a linear combination of the elements of ~(k) and

corresponds to the feedback signal in the continuous case . The second term which

depends on the output error e
1
(k) is found essential in the discrete case to

establish the stability of the error equations as described in [9]. If (k) is

bounded, as the adaptation proceeds , this term is seen to tend to zero with e1(k).

Following the results in 12) it can be shown tha t a constant vector exists

such tha t when ~(k) ~~ the transfer function of the plant together with the

controller matches that of the reference model.

The adaptive control problem is to determine the law for updating 9(k) such
_*tha t e (k) • e as It -‘~ while maintaining overall system stability.

Case (ii) (*~n—l) : With no loss of generality* we can assume that L(z) a rational

func tion in z (with L~~(z) a strictly proper minimum phase function) exists such

that W
M
(z)L(z) is strictly positive real. However, since L(z) is not physically

realizable the same modification as that suggested in the continuous case has to

be used here as well. As shown below, this involves feeding back signals into both

plant and model such that the error equations have the same form as in case (i) • 1 .

(ref. Section 4). Figure 03)indicates the structure of the controller when the plant

• gain k~ is known; f or simplicity it is assumed that It — kM — 1. Since in this

case only 2n parameters have to be adjusted we define eT
oc — (c1(k) ,c2 (k) , . . .

and w
T*k , (v ) (k) T,v (2~ (k)T]. 1’ .’

* It ii obvious that a rational function L(z) with denominator polynomial Z4(z)
exists such that WM(z)L(z) is strictly positive real.

~~~~~
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The signal fed back into the plant is

• u (k) — OT (k)

while the signal fed back into the model is

u~(k) — L(z) . [ (L 1(z) OT(k) _eT (k)L
_l

(z) }~ (k) + ~T (k) rc (k)e1(k) ]

(where L 1(z)w(k) —

so that the resulting error equations have the form required to generate stable

adaptive laws as described in Section 4.

While L(z) is not physically realizable, WM(z)L(z) can be realized and hence

the overall system Is as shown In the f igure (3) .

desired output

WM ( z ) L ( z )
I Yg auxiliary output

+ I-
_ _ _ _ _  

e (k)

r (k) - c r ~~~
( 1 

(E)

~(k) — L 1(z)v(k)

[L
_
~

eT_eTL
_
~1

Figure 3



--~- - w -  — • - -
~~~ 

-- - -  - -  - -

—6—

4. The Error Equations : 
*Let the parameter vector ~

‘(k) be expressed as

— _* —0(k) — 0 + +(k)

where $(k) represents the parameter error vector at time k.

Case (I) (in—n): The output error e
1
Oc) may be expressed as

e1(k) — 

~~ 
[W
M
(z)1{~

T(k) (k) — 
•••T
(k)r

_
(k) (k) }

where WN (z) is a strictly positive real operator. From the recent results in [9]

(also given in detail in the next section) it is seen that if ~(k) is updated

accord ing to the law

~(k+l) — ~Qc) — re
1(k)i (k)

• 
e1(k) 

+ 0 whether or not ~(k) is bounded. Since in this case the (desired) output

of the model is uniformly bounded, the plant output will also be uniformly bounded

and approach the desired output asymptotically .

Case (ii) (m~n—1): The output error e1
(k) in this case (gee [2]) satisfies the

error equation

e1(k) — [WM
(z)L(z)] {$ T (k) 1(k) — csc

T(k)r~ (k)e (k) }

• where WM(z)L(z) is a strictly posit ive rea l transfer function and as defined earlier

L~
1(z)i~(k) r (k).

• By the same arguments as in case (i) it follows easily that if the adaptive law
•

• (k+l) — • (It) — re1 (It) ~ (It) I:
is used , then S

e1(k) 0 as k + .

However , it no longer follows that the plant output will be bounded since the model
*

* This applies to case (i). For case (ii) 0(k) — B + +(k).
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output (which is due to both reference and the auxiliary inputs) may be unbounded.

Hence, to prove the global asymptotic stability of the adaptive system it is

necessary to show that neither the plant output nor the model output can be un-

bounded — in other words verify f or the discrete case the conjecture made in [2]

for continuous systems. The rest of this paper is devoted entirely to this problem.

5. Verification of the Conjecture by Narendra and Valavani for Discrete Systems:

a) Description of the Error Model:

The error model whose stability is to be analyzed is a complex vector nonlinear

difference equation. For convenience of analysis we shall consider it in three

separate parts which correspond to the three parts of the system shown in Figure(4).

~~~~~~~~~ 
~~~Cm

(zI_A
m

)
_l

bm 
~ w(k) 

WL
(z)

~~~ ~~~~~~~~~~~~~~~ 
S.P.R. J e1(k)

Par t I Par t II Par t III

The Plant Feedback Loop The Pref titer The Error Model

Figure 4

~~~11’Part I — The Plant Feedback Lo~p~: The plant together with the controller can be 4

described by the vector difference equation

x(k+l) — A x(k) + bj,
T(k)w(k) + r(k) ] I S ’

(5)
w(k) - CmX(k)
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w(k) represents the output vector of interest, x(k) is the state vector of the

plant together with the controller and when •(k), the parameter error vector is

identically zero, the plant and model transfer functions match exactly. r(k), the

reference input, is uniformly bounded and the matrices A
~ 

and Cm, and vector b

are of appropriate dimensions. As described in the previous section A is a

(3nx3n) stable matrix and b is a (3nxi) vector and C is a (2nx3n) matrix.

Part II — The Prefilter:

The second part of the system shown in Figure(4)consists of a diagonal trans-

fer matrix all of whose elements are the same and equal to W
L

(z) = L 1(z) or S

— L 1(z )w
i(k) (6)

L~~(z) is assumed to be an asymptotically stable system of relative degree n — in as

described earlier (number of poles — number of zeros = n — in)and of minimum phase.

Part III — The Error Model [9]:

The third part is the model of the error equations described in the previous

section and consists of a stt ictly positive real transfer function in the feed—

forward path and feedforvard and feedback gains .
T(k) and ~~

T
(k)rc(k) respectively

as shown in Figure(4). It can also be represen ted by a 3n order dif fe rence

equation

• e(k+l) — Ame(k) + bv (k)

e1(k) — cTe(k) + dv(k) (7)

v(k) — •
T (k)c(k) — cTo t rz o t e o t

a > ~~ , r _ r T > o

where d + cT zI_A~)~~b is strictly positive real . S
The parameter error vector •(k) (and hence the parameter vector 0(k)) is ad—

j usted according to the law

•(k+1) — •(k) —re (k)C(k)1 (8)
(or e (k+l) — 0(k) —

S. - .
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The four sets of difference equations (5),(6) , (7) and (8) completely determine

the error model of the overall discrete system. The signal r (k) and output error

e1(k) determine how $(k) is updated but this, in turn, determines the nature of w(k)

and c(k) .

b) Statement of the Conjecture: The conjecture in [21 when applied to the problem

above may be stated as follows:

If +(k) is adjusted according to the law (8) to keep the output error-bounded ,

the output of the plant i.e. w(k) will also be bounded.

Equivalently, the conjecture implies that the overall nonlinear system described

by (5) , (6) , (7) and (8) is stable and that all the signals are uniformly bounded.

Since the stability in the large of the above nonlinear system is intractable,

we shall consider the three linear blocks in Figure(4) separately to simplify

analysis.

c) A Qualitative Analysis:

Part I of Figure(4) is a feedback loop with a stable time—invariant forward

path and a time—varying gain vector +(k) in the feedback path. The output vector

w(k) can be either uniformly bounded or unbounded. In the former case C (k) , the

output of the prefilter is also uniformly bounded and the behavior of par t III

and, hence, that of the entire system are completely known. If the input r(k)

is sufficiently rich, the vectors w(k) and COt) will be uniformly bounded while S

+(k) and e
1(k) tend to zero as k + 

~~. If , however, r(k) is not sufficiently

rich, •(k) + $~~
, a constant vector , while e1(k) + 0. In both cases the signals

in the system are bounded. If, however, it is assumed that w(k) and, hence C(k)

are unbounded, the analysis in the following section shows that we are led to a -
contradiction . Hence , only the first alternative is possible (i.e. w(k) is

uniformly bounded) and the conjecture is verified.
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Before proceed ing to give an analytic proof , we present here a brief

qualitative analysis of the various steps involved.

• In section d , it is first shown that e1Ot) and e1(k)C(k) tend to

zero asymptotically whether or not C (It) is uniformly bounded. This , in

turn , implies that + (k) tends to a constant vector •
*

• The asymptotic be-

havior of part I can be described in terms of the dominant modes of the

unstable system x — EA~ + b~,
T(k) C ]x and it is shown that asymptotically

w(k) and C (k) exhibit similar behavior and that •(k) is asymptotical ly

orthogonal to the dominant mode of C (k) and hence w(k) . This , in turn ,

implies that the dominant mode of ~ (k) is not present in the feedback signal

in part I as It + which .. ontradicte the assumption that w(k) is unbounded .

Hence, the overall system is such that when there is no reference

• signal W(k) , C (k) an~ e1(k) + 0 as It + and •(k) + •* a constant vector

such that the feedback loop is asymptotically stable . When r(k) is suff i—

ciently rich , W (k) and C (k) are uniformly bound ed but + (k) and e1(k) + 0.

• d) Proof of the Conjecture

The Error Model: -
• From the discrete version of the Kalman—Yacubov ich lemma if

d + cT zI_A~~~b is strictly positive real a matrix P — ~T 
> 0 and a vector

q exist such that -

A~TPA~~_ P _ = q q T _ e ~L ; A ~TPb u. c/2 + v q ; d _ b TP b _ v 2 (9)

_~~~~~~~~~~~~~ S. ~~~~~~~~~~~~~~~~~~~~~~
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f or some L — LT > 0 and scalars t ,’i > 0.

If a Lyapunov function candidate for the set of equations (9) is chosen as:

V( k) - 2e(k) TPe(k) +

it was shown in [ 9] that ~V(e(k) ,$(k) ) AV(k) — V(’k+l) — V(k) may be expressed as: S

~V(k) - _2 [eT(k) q - vv(k) ]2 
- 2ceT (k)Le(It)

+ (l_2cI)cT (k)rc(k) e~ (k)

1
~~0 i f a > ~~

Hence the systam ii stable and e(k) and + Ot) are bounded if e(0) and $(0) are bounded .

Furthermore , since

I ~ 
AV(k)~ — IV(u’) — V(0) I < - 

S

k—O

E 2(eT (k)q = vv(k) ]2 + 2ceT (k)Le (k)
k—0

+ (2cI_l)~
T(k)rc(k)s~(k) — -

we conclud, that

sOt) • 0 
T(k)r~(k) 2(k) + 0 (10)

and e
1
Oc)~~~O ask + •

4 whether or not ~(k) ii uniformly bounded. •

gj~~, £ (~) . — is (k)~~(k) ,  from (10) we have A~(k) • 0 as k~~ ~~. Hence •(k) is a

Cauchy sequenc. which b.longa to a compact set and hence

•(k) • a constant vector (11)

4 _ _ _ _ _

~~

-

~~~
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Further since e
1

(k) — cTe(k) + dv(k) , the input v(k) to the strictly positive

real transfer f unct ion also tends to zero . Hence we have

,T (k) C(k) — aCT (k) r C(k) e1(k) ÷ 0 as k + (12)

If the vector C(k) increases without bound there exists a subsequence C(~ ) such

that IIC (~~)~ I increases monotonically with and ,
T (~ )C(~ ) — ~C

To() rc(k) e1(k) + 0.

Since ~(k)e1Ot) -‘ 0 (eqn. (10) ) it follows that

— ~‘1~~ II’~~I (13)

4,
where u(k)~~~ 0 as k -’ .

We now consider the implications of equations (12) and (13) for different

classes of inputs C(k) .

Case 1 — •(k) and C(k) Scalars:
4, 4,

• From (13) it follows that if Ic(k) ’ • then •(k) - 0 and since •(k) has a

limit •(k) + 0 as k -I ~ The importance of this lies in the fact that the theoretical

arguments used in the following more general cases are in essence similar to that

used here .

In the plant feedback loop if •(k) • 0, since A is an asymptotically stable
r 

• 

S a

• matrix, x(k) and hence w(k) and c(k) are bounded which contradicts the assumption

made that COt) is unbounded .

Case 2: ~(k) — C1(k)[L 1 + o(l) ] is a constant vector .

We consider here a special but important case of that treated in Case 3. £1 is

a constant direction and C(k) asymptotically approaches this direction. By (11)
S P 

*the parameter error vector •(k) converges to a constant vector • and if

E II~.(k) j~ , from the results on almo•t constant systems [103 we note that
k-a
both w(k) and ~(k) exhibit this type of behavior.

_ _ _ _  
- S
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From (13) we have

• £1 0

and hence

.0 a s k  +
IIC(k)1I

This , in turn , implies (following the same arguments as in Case 3) that the

f eedback signal ,T(k)w(k) does not contain asymptotically the dominant component

of w(k) . Hence x(k) , w(k) and COt) cannot be unbounded.
2n

Case 3: ç(k) — E c~ (k) L~ (L 1 are 2n independent constant vectors).
______ 

i—i

In this case, we consider a general unbounded input vector C(k) whose

“dominant components” lie in an a1—d imensional subspace .

Let C 1(k) ,C 2(k ) , . . .  C (k) be unboundeda2
while C +1(k) , . . .,  C 2 (k) are uniformly bounded.n

Fur ther , among the a2 unbounded ~oaponents we assume tha t a1(~m2) are

dominant components such that

supiC (V)I 4, sup II CC ~’) II I — l ,2 ,...,m1by
- C~ ( k ) I — o(sup II”’~I$ I i — *t1

+l,...,m
2 

(14)

[Refer to Appendix for definition of o(’) ~.nd 4,].

We fur ther assume (with no loss of generality) that C1(k) are “asymptotically

independent” as defined in the appendix.

* *
S Our aim here is to show that +(k) • + such that • is orthogonal to the

subepace generated by £ ,t 2 , . . .,t  and hence to the dominant components of C(k) .
• 5 1 a1

Since the dominant components of w(k) lie in the same subspace if WL (z) is a

minimum phase transfer function •* is also orthogonal to these components and

this, in turn , leads to a contradiction if w(k) is unbounded . [Note that if

- - - - - - — - - S
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a1 — in
2 

— 1 the present case reduces to Case 2] .

By (12)

(k) — olsup II C ( v ) H ] (15)
1—1 k~v

Since Ci(k) are asymptotically linearly independent it follows that

:
h a  ,T(k) L — • £ 4 

— 0 (16)
.1.

2n
If w(k) = E w~(k)2.~ it follows from (6) that

— W
L

(z)v
i

(k) i - 1,2 , . . .2n .

Since WL(z) is a strictly proper minimum phase transfer function it follows that

w~(k) are unbounded for i — l,2 ,...,m2 and uniformly bounded for i —

and that w1(k) ,. . . ,v (It) are the dominant components of w(k).

The feedback loop in I- is described by the difference equation

x(k+l) - [A~ + b~+
T (k) C~ ]x(k) + b r(k)

- 
- A X(k) + bm+

T
(k) w(k) + b

~
r(k) (17)

Since r(k) is uniformly bounded and A is an asymptotically stable matrix it follows

• that if w(k) is unbounded

• Ix(k)I ~ c1 sup I.
T(v)w(v)I + c2 c1,c2 > 0 (18) - S

• k~v

By (16)I , T(k) w(k)I _ o[supllw (v)II ] S

and hence

• Ix(k)I — o(sup I~C z(v) I I ]
k~v

• ~ 
o[supVx (v) 

~~ 
I 

- (19)
k~y

which is a contradiction if x(k) is unbounded .

S 

_ _ _ _ _ _ _ _- 
S .
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Hence x(k) , w(k) and C(k) are uniformly bounded and the adaptive control system

is stable. Further, the auxiliary input to the model is

uM(k) — L(z) {[L~~(z)~ (k) — •(k)L~~(z) ]w(k) + cte1(k) C
T(k) rC(k) }

Since •(k) -0 and e1
(k) + 0 as It -‘ —, uM(k) + 0 as k -o ~ and hence the model

output approaches the desired output asymptotically. Further since e1
(k) + 0 S

the plant output also asymptotically approaches the desired output.

6. Conclusion: The paper presents a proof of the stability of the adaptive

• control system suggested by Narendra and Valavani [2] for the discrete case. The

same proof could also be used to show that the discrete controller suggested by

lonescu and Monopoli [6] is also stable. Hence discrete adaptive systems which

use an augmented error signal are noW practically feasible.

The adaptive control problem in the continuous case using an augmented error

signal still remains unresolved . Recent results given in [8] used in conjunction

with the arguments used in this paper may prove effective in its resolution .
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Append ix

Definition 1: Let {x(k) } and {y(k) } be two sequences . If there exists a sequence

{8(k) } with 8(k) -. 0 as It -‘ such that y(k) — B(k)x(k) then we denote

y(k) — o(x(ki]

Definition 2: Let {x(k)} and {y(k) } be two sequences . If there exists a positive

constant M such that

Iy( k ) I ~ M Ix (k) I for all It C N

• 
S

We denote it by
S 

y(k) — 0[x(k)] 
S

Definition 3: If {x(k) } and {y(k) } are two sequences such that x(k) — O[y(k) ]

and y(k) — O[x(k)] ,  we say that the two sequences are equivalent and denote it by

S x(k) 4, y(k) . • S

The following definition is found to be useful while describing two sequences

which evolve at the same rate but are not equivalent . 
S

Def inition 4: Two sequences (x(k) } and {y(k) } are said to grow at the same rate if

S sup lx(v) I ~~ suply (v) I I
• k~v

It follows that two sequences which are equivalent grow at the same rate but

not vice versa. S

Definition 5: Sequence (x(k)} is said to grow faster than sequence {y(k) ) if

suply(v) I • o[suplx(v)I]
• k~v k~v

Let WL (z) be a rational transfer f unction of a linear t ime—invariant discrete

syst with all its -pole, and zeros within the unit circle and input and output 
I

x(k) and y (k) respectively. L t  hOt) be the la ’ulse response of U
L

(S) . Since 
S

5 - -
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h C it follows that

Iy(k) I ~ c1 suplx(V) I + c2 
(A.l)

k~v •

where c1 and c2 are positive constants. Hence S

• suply(v) I — 0(sup~x(v)~ ]
k~v k~v

Considering y(k) as the input and x(k) as the output we also have (since W~~(z)

is stable)

• Ix(k) I ~ c sup Iy(v)I + c~ (A.2)

where c~ and c~ are positive constants and r1 is the relative degree (i.e. number of

poles — number of zeros) of WL (z) .  If the rate at which the sequence y(k) can grow

is bounded [e.g. any linear system with bounded coefficients] it follows from A.2

that S 
•

(x(k)I ~ c’~ sup ly(v)f + c . (A .3)
k~v 

S

r
c’j is a positive constant and c’j c~IA 1I where A 1 

denotes the maximum rate at which

y(k) can grow.

In view of (A.l) and (A. 3) -5

• suplx(v)I ~ sup~y(v)I (A.4) S

• k~v k~v S 
S

and (x(k) } and {y(k) } grow at the same rate.

Let W (z)I be a transfer matrix with inpu t vector w(k) and output vector C(k)

where WL (z) is a minimum phase transfer function and I is the unit matrix. If w(k) 
S

and c(k) ar. represented as

• 2n
w(k) — £ w~(k) L4

i—i 4. 
1 •.

2n ~A.5,

ç(k) — E
i—i 5.

- - 

•
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where L
~ 

are independent constant vectors it follows that C~ (k) — wL (z)wi(k.) and

f rom (A .4) that

sup lC i(V) I 4, sUP I v~(V) I (A. 6)
k~v

i — l,2 , . . .2n
2n

Def inition 6: Let ~(k) — Z Ci(k)Li where £~ are independent constant vectors .
i— I.

The components r~ (k) - (i — 1,2,. .. ,m~) are said to be dominant if c~(k) grows at

the same rate as IIC(k)II or

• sUplCi
(V) I 4, sup IIC (V)II I — l,2,...m

1 
(k.7)

by k~v

• By definitions (5) and (6) the components C i (V) i — a1+l ,.. . ,2n would grow at a

slower rate than ~C(k) fi and

sup lC i(V) I — o[sup fI C(v) II I i — a1+1,..., 2fl (A.8)
k~V k~V S

Lemea: If w(k) and ~(k) are the vector input and output respectively of a minimum

phase tranif er matrix WL(z)I such that (A.4) holds and wi(k) I — l, ...,m1 are

dominant then

sup f w (k) f ~ sup lt C(v ) ft i —

k>v i k3v- 1
(A.9)

sup (w~(k) I — o(sup ftc(v) ft i — m1+1, . . . 2n 
5 

5

k~v

Proof: Follow directly from (A.5) ,(A.6) ,(A.7) and (A.8).

• Further since •up IIw(v)lI 4, supff C (v) Il
k~v

we have suplwi(v ) I  4 sup IIv(v)II i —

and .u~ lw~(V) I — o(sup ~ v(V) fi 3 i — a1+l,. . . , 2n (A.10)
( k~v

so that v (k) I — i,2,...,m1 
are dominant . •

2n
Definition 7: If C(k) — t C4 (k) & with C (k) I — l,2...m doaini.”~t , then ‘ (k)

i—i a i I 1
are said to be asymptotically independent if 

-- S S ~~~~~~~~~~~~~~~~~~~~~~-
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a1
E c1C1

(k) — o(sup I(c(v)$I 3 (A.11)
i—i

implies c1 
= c~ — ... — c =  0

Without loss of generality we can always assume that a number a1,

1 ~ a1 ~ 2n exists such that ? 1
(k),...,C (k) are asymptotically independent.

If C1(k) ( I- — -1,2 , .. . ,m~) are asymptotically independent and

a1
E c1(k) C1(k) — o(sup (f~ (v)(I I

i—i k~v

and lim ci
(k) exists for all i — 1,2,...,na.1 

then it follows that him ci
(k) — 9 for

• all i —

From equations (lO),(ll) and (12)

S $
T(k)~ (k) — 

T(k) r (It) (It) + 0

*

$(k) +

-
~
. C) as It + ~~~.

Hence 
T(k) r (It) (It) — o[IIc(k)II ] and it follows that

S 

f ,
T(k) C(k) I_  o[IIC(k)II I — o[supIIC(u)II I S

k~v

• If C1(k) (i — l,2,...,m1
) are asymptotically independent S

S -

• • L~ — 0 i — l,2,...,m~ (A.12)

By (A.lO) and (A.L2) it follow, that

supl$
T
(k)w(k) I — o(supllw (V)II 3 (A.13)

( k~v k3v


